Таблица умножения и игра, чтобы быстро выучить
Содержание:
- Главные правила по теме
- Правило встречается в следующих упражнениях:
- Примеры на деление в столбик
- Задания для домашней работы
- Принцип умножения
- Примеры по математике
- Вычисления с дробями, степенями и сложными функциями
- Простые задачи на деление/умножение по содержанию и равные части
- Как научиться делить столбиком трехзначные числа
- Общие сведения
- Да какая разница?
- Задачи на темы: “Порядок выполнения действий. Расстановка скобок”
- Деление 3 класс
- Игры на развитие устного счета
- Деление на двузначное число
- Пигментация и коричневые пятна
- Симптомы заболевания сердца у женщин
Главные правила по теме
Говоря о главных и неглавных математических действиях, нужно сказать, что четыре основных действия можно свести к двум: сложение и умножение. Если вычитание и деление представляется для школьников сложным, правила сложения и умножения они запоминают быстрее. Действительно, выражение 5 – 2 можно записать иначе:
2 + х = 5.
Аналогично:
8 : 2 = у × 2 = 8.
В случаях с умножением действуют правила, схожие со свойствами сложения: от перестановки множителей произведение не изменится:
5 × 4 = 4 × 5.
При решении сложных задач первое действие — то, которое выделено скобками, затем — деление или умножение, потом все остальные действия по порядку.
Когда нужно решить примеры без скобок, вначале выполняется умножение или деление, далее — вычитание либо сложение.
Правило встречается в следующих упражнениях:
2 класс
Страница 65. Вариант 2. Тест 1,
Моро, Волкова, Проверочные работы
Страница 66. Вариант 1. Тест 2,
Моро, Волкова, Проверочные работы
Страница 62,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 73,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 75,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 82,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 92,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 59,
Моро, Волкова, Рабочая тетрадь, часть 2
Страница 65,
Моро, Волкова, Рабочая тетрадь, часть 2
Страница 71,
Моро, Волкова, Рабочая тетрадь, часть 2
3 класс
Страница 31,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 36,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 38,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 41,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 107,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 41,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 11. Вариант 2. № 1,
Моро, Волкова, Проверочные работы
Страница 23. Вариант 2. Тест 2,
Моро, Волкова, Проверочные работы
Страница 43,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 47,
Моро, Волкова, Рабочая тетрадь, часть 2
4 класс
Страница 10,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 29,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 58,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 81,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 90,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 91,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 6,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 27,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 84. Вариант 1. Тест 3,
Моро, Волкова, Проверочные работы
Страница 47,
Моро, Волкова, Рабочая тетрадь, часть 2
5 класс
Задание 441,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 673,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 818,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Упражнение 36,
Мерзляк, Полонский, Якир, Учебник
Упражнение 1,
Мерзляк, Полонский, Якир, Учебник
Упражнение 520,
Мерзляк, Полонский, Якир, Учебник
Упражнение 656,
Мерзляк, Полонский, Якир, Учебник
Упражнение 657,
Мерзляк, Полонский, Якир, Учебник
Упражнение 673,
Мерзляк, Полонский, Якир, Учебник
Упражнение 1050,
Мерзляк, Полонский, Якир, Учебник
6 класс
Задание 1211,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1222,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1262,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1266,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Примеры на деление в столбик
Давайте закрепим знания на практике. Для этого разделите столбиком примеры ниже, а после проверьте полученные цифры — чур, не подглядывать!
Легкий уровень |
Средний уровень |
Сложный уровень |
27:3= 48:4= 56:8= 72:9= 95:5= |
270:15= 504:14= 315:5= 728:8= 855:9= |
1749:11= 1080:45= 3888:72= 5248:64= 4818:66= |
Ответы:
- легкий уровень: 9; 12; 7; 8; 19;
- средний уровень: 18; 36; 63; 91; 95;
- сложный уровень: 159; 24; 54; 82; 73.
В детской школе Skysmart ученики решают примеры вместе с енотом Максом и его друзьями. Мы подобрали для вашего ребенка тысячи увлекательных заданий — от простых логических загадок до хитрых головоломок, над которыми интересно подумать. Все это поможет легче и быстрее справиться со школьной математикой. Запишите вашего ребенка на бесплатный вводный урок математики в Skysmart — мы покажем, что математика может быть увлекательным путешествием!
Задания для домашней работы
Задания для домашних работ для 3 класса (3 четверть)
1. Реши примеры.
а) 5 * 6 + 64 : 8 = | б) 18 : 9 + 37 * 2= | в) 31 * 3 – 56 : 8 = | г) 70 – 51 : 3 * 4 = |
д) 9 * 4 – 28 : 7 = | е) 7 * 16 – 80 : 8 = | ж) 11 * 5 – 49 : 7 = | з) 68 – 19 + 30 : 2 = |
2. Реши задачу.
В ящик помещается 12 пачек печенья. Сколько всего пачек печенья помещается в 5 ящиков?
3. Реши задачу.
В книжный магазин привезли 88 учебников, которые упакованы в коробки. Сколько коробок с книгами привезли, если в каждой коробке находится 11 учебников?
4. Реши примеры.
а) 17 * 0= | б) 12 : 1= |
в) 24 * 1 = | г) 21 : 1 = |
д) 0 * 32 = | е) 0 : 15 = |
5. Реши задачу.
В пекарне из 15 кг муки испекли 45 тортов. Сколько килограмм муки необходимо, чтобы испечь 60 тортов?
6. Реши задачу.
На складе находилось 45 кг сахара. Дополнительно привезли 4 мешка по 8 кг сахара в каждом, а затем со склада увезли 10 кг сахара. Сколько килограмм сахара осталось на складе?
7. Реши примеры и проверь операцию деления умножением.
а) 48 : 6 = | б) 12 : 4= |
в) 24 : 8 = | г) 21 : 7 = |
д) 15 : 3 = | е) 0 : 15 = |
8. Реши уравнения.
а) X * 18 = 72 | б) 90 : Y = 30 | в) 21 : X = 3 | г) Y * 6 = 42 |
9. Реши ЗАДАНИЯ по геометрии.
a) Начерти c помощью линейки 3 отрезка. Длина первого отрезка равна 5 см, второй отрезок на 3 см длиннее первого, а третий отрезок в 2 раза короче второго.
б) Найди и выпиши все прямые, тупые и острые углы у фигур, изображённых на рисунке.
а) 17 * 3 = | б) 52 : 4 = |
в) 19 * 4 = | г) 48 : 2 = |
д) 12 * 5 = | е) 69 : 3 = |
ж) 22 * 3 = | з) 17 * 4 = |
к) 13 * 5 = | л) 75 : 5 = |
м) 96 : 4 = | н) 69 : 3 = |
11. Реши задачу.
Школьная бригада собрала в саду 36 кг яблок и 20 кг груш. Весь урожай разложили в ящики по 4 кг. Сколько ящиков понадобилось?
Задания для домашней работы для 3 класса (4 четверть)
1. Реши примеры.
а) 210 * 4 = | б) 840 : 4 = |
в) 6 * 120 = | г) 660 : 3 = |
д) 220 * 4 = | е) 490 : 7 = |
ж) 190 * 3 = | з) 360 : 6 = |
к) 3 * 280 = | л) 140 : 2 = |
м) 110 * 7 = | н) 640 : 4 = |
2. Реши примеры.
а) 970 – 50 = | б) 320 + 50 = |
в) 520 – 10 = | г) 630 + 90 = |
д) 320 – 30 = | е) 230 + 90 = |
ж) 220 – 20 = | з) 590 + 50 = |
3. Реши задачу.
Для ремонта школы привезли 160 мешков цемента и 440 мешков песка. Сколько мешков строительного материала потребовалось для ремонта, если после ремонта осталось 250 мешков?
4. Реши задачу.
Фермер вырастил 230 ц картофеля и 140 ц капусты. 360 ц овощей отправили в школьную столовую. Сколько центнеров овощей осталось у фермера?
5. Реши уравнения.
а) 7 * х = 490
б) у : 9 = 70
в) a – 560 = 120
г) b + 380 = 960
6. Реши задачу.
На автостоянке стояло 84 легковых и несколько грузовых машин, которых было на 63 машины меньше, чем легковых. Во сколько раз грузовых машин меньше, чем легковых стояло на автостоянке?
а) 984 – 159 = | б) 523 + 369 = |
в) 523 – 459 = | г) 374 + 579 = |
д) 319 – 198 = | е) 130 + 379 = |
8. Реши примеры.
а) 24 * 8 + 336 : 6 + 88 =
б) 16 * 9 + 342 : 2 – 146 =
9. Реши задачу.
На продуктовом складе находилось 64 мешка с сахаром и несколько мешков с мукой, которых было на 56 штук меньше, чем мешков с сахаром. Во сколько раз мешков с мукой меньше, чем мешков с сахаром находилось на складе?
Принцип умножения
Операция умножения подразумевает действие, заменяющее собой многократное сложение. Один из аргументов называют множимым, а другой множителем. Результатом умножения является произведение. Найти его довольно просто, если знать свойства операции.
К достаточным правилам, зная которые можно найти произведение любых чисел, относят:
Сочетательное — если при умножении произведения на любое число изменить порядок аргументов, результат не изменится. В буквенном виде закон имеет вид: a * b * c = a * c * b. Это правило можно доказать на опыте. Если взять квадраты размером 1 на 1 и построить из них блок 6 на 6, то фактически это будет перемножение 1 * 6 = 6. Полученный прямоугольник можно объединить с аналогичными 3. То есть 3 * 1 = 3. Общее число квадратов получится 1 * 6 * 3 = 18. Если же последовательность сборки изменить, сначала собрать предмет из трёх блоков, а потом к ним добавить 6, результат не изменится.
Распределительное — при выполнении действия над суммой и числом, можно отдельно каждый член выражения помножить на множитель, а затем результаты сложить. В математической записи правило выглядит так: a * (b + c) = a * b + a * c. По-другому операция называется раскрытием скобок. Это правило аналогично и для вычитания. Но при этом есть нюанс, что умножение выполняют сначала на уменьшаемое, а затем вычитаемое, и из первого вычитают второе.
Умножения на 0. Любое натуральное число при умножении на 0 даст в ответе 0. Справедливо и обратное утверждение.
https://youtube.com/watch?v=IOL-S34kuiI
Для умножения до 100 существует специальная таблица, которую необходимо знать наизусть.
Следует также понимать, что при увеличении числа в десятки раз ответ увеличится на число нулей, стоящих в умножаемой цифре. Например, 34 * 10 = 340; 980 * 1000 = 980000. Так, выполняется сколь угодно сложное перемножение и для чисел большего десятка.
Произведение часто находят методом «столбик». Суть способа состоит в том, что аргументы записывают один под одним. При этом самая правая цифра верхнего числа должна стоять над самой правой нижнего. Далее выполняют поразрядное умножение начиная с младших членов. Если при этом образуется высший разряд, он прибавляется к перемножаемому.
Примеры по математике
Математика 3 классЗадачи по математике 3 классЗадания по математике 3 классКонтрольные работы по математике — в.1Контрольные работы по математике — в.2Контрольные работы по математике — в.3
Великие математики
Евклид. (ок. 365 — 300 до н. э.).
Древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки. Евклид доказал множество теорем и гипотез.
Исаак Ньютон.
Родился 4 января 1643 года, механик, астроном и физик, создатель классической механики, член, затем президент Лондонского королевского общества. Один из основоположников современной физики, сформулировал основные законы механики и был фактическим создателем единой физической программы описания всех физических явлений на базе механики, открыл закон всемирного тяготения, объяснил движение планет вокруг Солнца и Луны
вокруг Земли, а также приливы в океанах, заложил основы механики сплошных сред, акустики и физической оптики. Фундаментальные труды «Математические начала натуральной философии» и «Оптика». Ньютон разработал дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления.
Вычисления с дробями, степенями и сложными функциями
Это сложные случаи вычислений, которые не рассматриваются в рамках начальной школы.
Действия с дробями
Умножение простых дробей друг на друга не представляется сложными, достаточно лишь перемножить числитель на числитель, а знаменатель – на знаменатель.
Пример:
- 2 × 3 = 6 — числитель
- 5 × 8 = 40 — знаменатель
\({{2}\over{5}} × {{3}over\{8}} = {{6}over\{40}}\)
После сокращения получаем:\({{6}over\{40}}\) = \({{3}over\{20}}\).
Деление простых дробей не так сложно, как кажется на первый взгляд. Достаточно лишь преобразовать задачу – превратить ее в пример с умножением. Сделать это просто – нужно перевернуть дробь так, чтобы знаменатель стал числителем, а числитель – знаменателем.
Пример:
- 2 × 5 = 10;
- 8 × 3 = 24.
Действия со степенями
Если в задаче встречается число, представленное в виде степени, его значение вычисляется прежде всех остальных (можете представить, что оно заключено в скобки – а действия в скобках выполняются первыми).
Пример:
(5² – 7) : 3 = ?
- 5² = 5 х 5 = 25;
- 25 – 7 = 18;
- 18 : 3 = 6.
(5² – 7) : 3 = 6.
Преобразовав число, представленное в виде степени, в обычное выражение с действием умножения, решить пример оказалось просто: сначала умножение, затем вычитание (потому что в скобках) и деление.
Действия с корнями, логарифмами, функциями
Поскольку такие функции изучаются только в рамках старшей школы, рассматривать их мы не будем, достаточно только сказать, что они, как и в случае со степенями, имеют приоритет при вычислении: сначала находится значение данного выражения, затем порядок вычислений обычный – скобки, умножение с делением, далее по порядку слева направо.
Простые задачи на деление/умножение по содержанию и равные части
1. Бабушка положила по 2 помидора на 6 тарелок. Сколько всего помидоров приготовила бабушка?2. В четырёх электропоездах по 9 вагонов в каждом. Сколько всего вагонов в этих поездах?3. В трёх корзинках поровну лежало 60 грибов. Сколько грибов лежало в каждой корзинке?4. 16 восковых мелков лежит в коробках, по 8 восковых мелков в каждой. Сколько коробок с восковыми мелками получилось?5. В коробке лежит 5 цветных мелков. Сколько цветных мелков в девяти таких коробках?6. В трёх пеналах 12 ручек поровну в каждом. Сколько ручек в каждом пенале?7. В коллекции у Вали 4 ряда бабочек по 3 бабочки в каждом ряду. Сколько всего бабочек у Вали в коллекции?8. В четырёх домах по 9 этажей. Сколько всего этажей в этих домах?9. 3 рыбака поймали 18 рыбок поровну каждый. Сколько рыбок поймал каждый рыбак?10. 12 кг моркови разложили в бумажные пакеты по 6 кг в каждый. Сколько пакетов с морковью получилось?
Как научиться делить столбиком трехзначные числа
Когда в делителе стоит трехзначное число, действие лучше всего выполнять в столбик. Алгоритм математического решения аналогичен делению на двузначное число.
Для примера рассмотрим следующие действия: 146676 : 719
146<719, поэтому сразу возьмем четырехзначное число «1466». В данном значении помещается 2 делителя: 719 х 2= 1438. Цифра «2» будет первым значением частного. Ее запишем справа под уголком.
1466 — 1438 = 28. Полученную разность запишем под чертой слева. Снесем к 28 цифру «7». 287<719, поэтому рядом с двойкой запишем «0».
Снесем последнюю цифру делимого «6», в итоге получится число «2876», которое разделим на 719. Возьмем по 3: 719 х 3 = 2157 — мало, можно взять по 4: 719 х 4 = 2876. Цифру «4» запишем рядом с «20», получим в ответе 204. От 2876 отнимем 2876 , получим разность 0.
Общие сведения
Математические вычисления сопровождают человека на всём протяжении его жизни. Когда произносится слово «число», имеется в виду определённый символ, определяющий количество чего-либо. Существуют различного вида выражения, например, целые, дробные, логарифмические. Но самыми простыми являются натуральные. Своё название они получили из-за применения в повседневной жизни. Их используют для счёта и определения порядка.
Таким образом, под натуральными числами понимают выражения, применяемые для определения количества любого физического объекта или присваивания порядкового номера. Например, 3, 1789, 9876, 100009. Если такие числа расположить в порядке увеличения, этот ряд называют натуральным. Последовательность 2, 3, 4, 5 будет именно такой. Нужно отметить, что натуральный ряд бесконечен, наибольшего значения в нём не существует.
Есть несколько систем счисления. В зависимости от неё, для обозначения используется различный набор символов. В России, США, европейских странах применяют арабскую систему. При этом в повседневности используется десятичная разрядность, то есть для записи чисел берут знаки от 0 до 9.
С числами можно выполнять любые действия. Их складывают, вычитают, перемножают и делят. Кроме этого, возводят в степень, извлекают из-под корня, логарифмируют и дифференцируют.
К основным свойствам натуральных чисел относят:
- коммутативность при прибавлении;
- бинарность операции умножения;
- ассоциативность при сложении и умножении;
- дистрибутивность произведения относительно сложения.
Эти свойства важны. На них часто опираются при решении примеров на умножение и деление в 5 классе средней школы. Каждая запись числа состоит из определённого количества разрядов. По сути, она составляет совокупность разрядных слагаемых. В качестве единиц принимают десятки. Любое натуральное выражение можно представить в виде суммы таких чисел. Например, 89 состоит из 8 десятков и 9 единиц. Значит, равенство 89 = 80 + 9 будет справедливым.
Неизвестную натуральную цифру принято обозначать маленькой латинской буквой эн (n). Интересно то, что пересчитать все числа невозможно.
Да какая разница?
Действительно, настолько ли это важно – какое действие в примере выполнить первым, какое вторым?
Рассмотрим примеры:
10 – 5 + 2 = ?
Если мы будем выполнять действия по порядку, получим:
- 10 – 5 = 5;
- 5 + 2 = 7.
Попробуем иначе:
- 5 + 2 = 7;
- 10 – 7 = 3.
Получили два разных ответа. Но так быть не должно, следовательно, порядок выполнения действий имеет значение. Тем более, если в выражении имеются скобки:
25 – (18+2) = ?
Пробуем решить двумя способами:
- 25 – 18 + 2 = 9;
- 25 – 20 = 5.
Ответы разные, а для того чтобы определить порядок действий, в выражении стоят скобки – они показывают, какое действие нужно выполнить первым. Значит, правильным будет такое решение:
- 18 + 2 = 20;
- 25 – 20 = 5.
Другого решения у ответа у примера быть не должно.
Итак:
Правило первое: Математические действия в выражении выполняются по порядку, начиная с левого, направо.
Правило второе: Если в выражении есть скобки, действие в скобках выполняется в первую очередь, а затем следуют действия по порядку, слева направо.
Задачи на темы: “Порядок выполнения действий. Расстановка скобок”
1. Реши примеры.
1.1) 35 : 5 + ( 23 + 7 ) : 5 – 3 * 4 =
1.2) ( 39 – 19 ) * 3 + 24 : 3 + ( 9 + 36 ) : 5 – 13 =
1.3) 760 – (14 + 31 ) : 5 – 6 * 3 + 41 =
1.4) ( 52 – 34) : 2 * 8 + 7 * 3 – 13 + ( 64 – 44 ) : 4 =
1.5) ( 87 – 79 ) * 9 : 3 + 9 * 6 =
1.6) 45 : 9 + ( 13 + 22 ) : 5 + 4 * 6 =
1.7) 8 * 5 – 14 : 7 : 2 – ( 42 – 24 ) : 6=
1.8) 70 – ( 15 + 24 : 3) + 4 * 3 + 8 * 2=
1.9) 5 * 3 + 7 * 4 – (1 + 9) : 2 * 6 =
2. Расставь правильно скобки.
2.1) 3 + 6 : 3 + 3 * 3 = 6
2.2) 3 + 6 : 3 + 3 * 3 = 14
2.3) 3 + 6 : 3 + 3 * 3 = 12
2.4) 3 + 6 : 3 + 3 * 3 = 18
3. Расставь скобки различными способами и реши получившиеся примеры.
3.1) 5 + 5 – 5 * 5 + 5 =
3.2) 5 + 5 – 5 * 5 + 5 =
3.3) 5 + 5 – 5 * 5 + 5 =
3.4) 5 + 5 – 5 * 5 + 5 =
3.5) 6 * 6 – 6 + 6 : 6 =
3.6) 6 * 6 – 6 + 6 : 6 =
3.7) 6 * 6 – 6 + 6 : 6 =
3.8) 6 * 6 – 6 + 6 : 6 =
3.9) 7 – 7 * 7 + 7 : 7 =
3.10) 7 – 7 * 7 + 7 : 7 =
3.11) 7 – 7 * 7 + 7 : 7 =
3.12) 7 – 7 * 7 + 7 : 7 =
4. Расставь скобки разными способами и реши получившиеся примеры.
4.1) 12 : 4 + 56 : 7 – 36 : 6 + 13 =
a) __________
б) __________
в) __________
г) __________
4.2) 32 + 18 : 3 + 14 * 3 + 81 : 9 =
a) __________
б) __________
в) __________
г) __________
4.3) 56 : 8 + 8 * 5 – 72 : 8 =
a) __________
б) __________
в) __________
г) __________
Деление 3 класс
В третьем классе только начинают проходить деление. Поэтому третьеклассники решают самые простые задачки:
Задача 1. Работнику на фабрике дали задание разложить 56 пирожных в 8 упаковок. Сколько пирожных нужно положить в каждую упаковку, чтобы получилось равно количество в каждой?
Задача 2. На кануне нового года в школе детям на класс, в котором учится 15 человек, выдали 75 конфет. Сколько конфет должен получить каждый ребенок?
Задача 3. Рома, Саша и Миша собрали с яблони 27 яблок. Сколько каждый получит яблок, если нужно поделить их одинаково?
Задача 4. Четыре друга купили 58 штук печенья. Но потом поняли, что им не разделить их поровну. Сколько ребятам нужно докупить печенья, чтобы каждый получил по 15 штук?
Игры на развитие устного счета
Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.
Игра «Угадай операцию»
Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.
Игра «Упрощение»
Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.
Игра «Быстрое сложение»
Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.
Игра «Визуальная геометрия»
Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.
Игра «Копилка»
Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.
Игра «Быстрое сложение перезагрузка»
Игра «Быстрое сложение перезагрузка» развивает мышление, память и внимание. Главная суть игры выбрать правильные слагаемые, сумма которых будет равна заданному числу
В этой игре на экране дается три цифры и дается задание, сложите цифру, на экране указывается какую цифру надо сложить. Вы выбираете из трех цифр нужные цифры и нажимаете их. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.
Деление на двузначное число
Когда ученик 3-го класса усвоил деление на однозначное число, можно приступать к следующему этапу — работе с двузначными цифрами. Начинайте с простых, явных примеров, чтобы малыш понял алгоритм действий. Например, возьмите числа 196 и 28 и объясните принцип:
- Сначала подберите примерное число для ответа. Для этого выясните приблизительно, сколько цифр 28 поместится в 196. Для удобства можно округлять оба числа: 200:30. Получится не больше 6. Полученное число не нужно записывать, это только догадка.
- Проверяем результат умножением: 28х6. Получается 196. Предположения оказались верными.
- Запишите ответ: 196:28 =6.
Еще один вариант обучения: деление на двузначное число уголком. Такой способ больше подходит для работы с числами от четырех разрядов, то есть тысяч. Приведем простой пример:
Напишите на листе бумаги 4070, начертите уголок и подпишите делитель — 74.
Определите, с какого числа начнете делить. Спросите у ребенка, можно ли разделить 4 на 74, 40? В результате малыш поймет, что сначала нужно ограничиться числом 407. Очертите полученную цифру сверху полукругом. 0 останется в стороне.
Теперь нужно выяснить, сколько 74 поместится в 407. Действуем с помощью логики и проверки умножением. Получится 5. Записываем результат под уголком (под делителем).
Теперь умножаем 74 на 5 и записываем результат под делимым. Получится 370
Важно начинать запись с первого числа слева.
После записи нужно подвести горизонтальную черту и отнять 370 от 407. Получится 37.
37 разделить на 74 нельзя, поэтому вниз сносится оставшийся в верхнем ряду 0.
Теперь делим 370 на 74
Подбираем множитель (5) и записываем его под уголком.
Умножаем 5 на 74, записываем результат в столбик. Получится 370.
Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка. 4070:74=55. Частное смотрим под уголком.
Для проверки правильности решение произведите умножение: 74х55=4070.