Запись сложения столбиком. закрепление. 2-й класс

Содержание:

Примеры многозначных глаголов

Слова-действия тоже могут иметь более одного значения:

Слово Прямое значение Переносное значение
Садиться Садиться на стул, в кресло, на лошадь. Садиться на поезд (не в прямом смысле садиться на крышу поезда, а в переносном — занимать в нем свое место).
Сойти/сходить Можно сойти с поезда, сойти на нужной остановке, сходить в магазин. «Сойти/сходить с ума».
Бить Наносить удары. «Родник бьет фонтаном», «жизнь бьет ключом».
Резать Разделять на куски с помощью ножа или другого острого лезвия. Вызывать неприятное ощущение — «свет режет глаза», «звук режет слух».

Чаще всего, слова с двойным значением — это слова исконно русские. У заимствованных терминов значение, как правило, одно.

Темы: «Сложение и вычитание чисел от 1 до 20», «Длина, миллиметр, метр», «Сравнение чисел», «Решение текстовых задач на сложение и вычитание», «Порядок действий, скобки», «Время, часы, секунды»

Дополнительные задачи по темам:

– «Двузначные числа».
– «Трехзначные числа».
– «Определение разрядов чисел. Единицы, десятки (повторение)».
– «Определение разрядов чисел. Единицы, десятки, сотни».
– «Сложение двух однозначных чисел. Сумма до 10 (повторение)».
– «Сложение двух однозначных чисел. Сумма до 18 (повторение)».
– «Сложение двух однозначных чисел. Сумма до 20 (повторение)».
– «Сложение двух чисел. Сумма до 50».
– «Сложение двух чисел. Сумма до 100».
– «Сложение однозначных и двузначных чисел».
– «Сложение двузначных чисел».
– «Сложение десятков».
– «Сложение трех чисел».
– «Сложение четырех чисел. Целые десятки».
– «Сложение столбиком двух чисел, сумма до 10 (повторение)».
– «Сложение столбиком двух чисел, сумма до 18 (повторение)».
– «Сложение столбиком двух чисел, сумма до 20 (повторение)».
– «Сложение столбиком двух чисел, сумма до 50».
– «Сложение столбиком двух чисел, сумма до 100».
– «Сложение однозначных и двузначных чисел в столбик».
– «Сложение десятков в столбик».
– «Сложение трех однозначных чисел в столбик».
– «Сложение трех двузначных чисел в столбик».
– «Вычитание двузначных чисел»
– «Вычитание однозначных чисел (повторение)»
– «Вычитание до 20 (повторение)»
– «Вычитание до 50»
– «Вычитание до 100»
– «Вычитание из двузначного числа однозначного»
– «Вычитание круглых десятков»»Устный счет».»Сложение и вычитание в столбик чисел до 10 (повторение)».
– «Сложение и вычитание в столбик чисел до 20 (повторение)».
– «Сложение и вычитание в столбик чисел до 50».
– «Сложение и вычитание в столбик чисел до 100».
– «Сложение и вычитание в столбик десятков».
– «Сложение и вычитание в столбик сотен».
– «Сложение и вычитание в столбик однозначных и двузначных чисел».
– «Сложение и вычитание в столбик двузначных чисел».
– «Сложение и вычитание в столбик однозначных из трехзначных чисел».
– «Геометрические фигуры: точка, прямая, отрезок, ломаная».
– «Треугольник. Периметр треугольника».
– «Прямоугольники. Периметр прямоугольников».
– «Многоугольники. Периметр многоугольников».
– «Виды углов: острый, прямой, тупой».»Единицы измерения длины».
– «Числовые выражения».
– «Выражения со скобками».»Уравнения, решение уравнений».
–»Умножение на числа 2 и 3″.
–»Умножение на числа 5 и 10″.
–»Деление, свойство деления».

Материалы для скачивания для 2 классаСкачать:1 четверть (PDF) 3 четверть (PDF)Интерактивный тренажер для 2 класса «Правила и упражнения по математике»Электронное учебное пособие для 2 класса «Математика за 10 минут»

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра «Быстрый счет»

Игра «быстрый счет» поможет вам усовершенствовать свое мышление. Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.

Игра «Быстрое сложение»

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Угадай операцию»

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Математические матрицы»

«Математические матрицы» великолепное упражнение для мозга детей, которое поможет вам развить его мыслительную работу, устный счет, быстрый поиск нужных компонентов, внимательность. Суть игры заключается в том, что игроку предстоит из предложенных 16 чисел найти такую пару, которая в сумме даст данное число, например на картинке ниже данное число «29», а искомая пара «5» и «24».

Игра «Визуальная геометрия»

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Упрощение»

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Классы математик (разряды и классы)

Чтобы детям было проще ориентироваться в числах, да и не только детям, было придумано разделение числа на классы и разряды.

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 — класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Такое разделение действительно очень удобно и легко запоминается. Гораздо проще в ходе обучения детей математике, рассказывая о какой-нибудь операции, говорить, как складывать столбиком, например. Потому что в ходе рассказа можно называть числа по разрядам и классам и так будет намного понятнее ученику, нежели просто называть цифрой.

Примеры многозначных прилагательных

Разные предметы одним словом можно не только назвать, но и охарактеризовать. Вот несколько примеров таких слов:

Слово Прямое значение Переносное значение
Стальной Изготовленный из стали. Например, стальной нож. Очень крепкий, непоколебимый — «стальные нервы».
Золотой Сделанный из золота — «золотые серьги», «золотое колье». Очень ценный, добрый, обладающий выдающимися моральными качествами — «золотой человек», «золотой ребенок», «золотое сердце».
Тяжелый Отнимающий большое количество физических усилий — «тяжелая работа». О чем-то, что трудно терпеть окружающим — «тяжелый человек», «тяжелый характер».
Белый Белого цвета — «белый снег», «белый лист». Стихотворение без рифмы — «белый стих».
Черный Черного цвета — «черные глаза», «черный маркер». Злой, саркастичный, затрагивающий щекотливые темы в грубой форме — «черный юмор», «черная комедия».

Опять-таки, список неполный. Кроме того, к перечню слов с двойным значением можно отнести прилагательные, описывающие одновременно цвета, запахи и/или вкусы: апельсиновый, малиновый, лимонный, сливовый и так далее.

Примеры деления в столбик на двузначное число

Рассмотрим некоторые примеры. Они довольно простые и помогут понять основные моменты данного способа.

Найдём значение частного чисел 265 и 53:

Найдем результат деления чисел 624 и 52:

Рассмотрим более сложные случаи деления в столбик. Найдем значение частного чисел 1610 и 35:

Деление пятизначного числа на двузначное. Узнаем значение частного чисел 10150 и 35:

Пример 5

Деление многозначного числа на двузначное с остатком. Вычислим, чему будет равно частное чисел 1978 и 38:

Деление на двузначное число можно выполнять в столбик и устно, но многозначные числа устно считать намного сложнее. Немногие школьники могут похвастаться подобными умениями. 

Освоение процесса деления поможет школьникам в дальнейшем обучении. Так же существует немало тренажеров и онлайн-калькуляторов, которые можно использовать в свою пользу.

Предыдущая
МатематикаФормулы двойного угла — значения функций, свойства и примеры решений
Следующая
МатематикаПоказательные уравнения — алгоритмы и примеры вычисления

Деление с остатком

Завершающим этапом уроков на закрепление навыка деления будет решение заданий с остатком. Они обязательно встретятся в решебнике для 3–4-го класса. В гимназиях с математическим уклоном школьники изучают не только неполные числа, но и десятичные дроби. Форма записи примера уголком останется прежней, отличаться будет только ответ.

Примеры на деление с остатком берите несложные, можно преобразовывать уже решенные задания с целым числом в ответе, прибавляя к делимому единицу. Это очень удобно для ребенка, он сразу увидит, чем примеры похожи и чем отличаются.

Урок может выглядеть так:

  1. Расскажите ученику третьего класса, что не все цифры можно поделить поровну. Для иллюстрации понятия возьмите натуральное число до 10. Например, попробуйте вместе разделить 9 на 2. Форма записи решения столбиком получится такой:
  2. Объясните школьнику, что остатком считается последнее число для деления, которое меньше делителя. Конец записи будет таким: 9:2=4 (1 — остаток).

Классы чисел

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса:

Названия классов многозначных чисел справа налево:

  • первый — класс единиц,
  • второй — класс тысяч,
  • третий — класс миллионов,
  • четвёртый — класс миллиардов,
  • пятый — класс триллионов,
  • шестой — класс квадриллионов,
  • седьмой — класс квинтиллионов,
  • восьмой — класс секстиллионов.

Для удобства чтения записи многозначного числа, между классами оставляется небольшой пробел. Например, чтобы прочитать число  148951784296,  выделим в нём классы:

148 951 784 296

и прочитаем число единиц каждого класса слева направо:

148 миллиардов 951 миллион 784 тысячи 296.

При чтении класса единиц в конце обычно не добавляют слово единиц.

Математика 6 класс

В 6ом классе появляется тема преобразования дробей в строчную запись. Что это значит? Например, дана дробь ½, она будет равна 0,5. ¼ = 0.25.

Примеры могут составляться в таком стиле: 0.25+0.73+12/31.

Примеры для тренировки:

Задание №1:

Задание №2:

Задание №3:

  1. В двух классах в общем было 92 стула. Из первого класса перенесли 16 стульев во второй класс и потом количество их уровнялось. Сколько стульев было в первом и втором классе изначально?

  2. В двух ящиках лежало 240 кг яблок. Из второго ящика в первый переложили 18 кг яблок. После количество яблок в первом и втором ящике уровнялось. Сколько килограмм яблок было изначально в первом и втором ящике.

  3. Автомобилист выехал из города в деревню со скоростью равно 11,5 км/ч. Спустя 2,4 часа оттуда же и в том же направлении выехал автобус со скоростью 46 км/ч. Спустя какое время автобус догонит автомобиль?

Пигментация и коричневые пятна

Математика 1 класс

В первом классе проходят раздел математики — арифметику. Арифметика – раздел математики, работающий с числами и вычислениями (действиями с числами).

В первом классе, как правило, проходят первые две самые простые операции с числами: сложение, вычитание.

Сложение – это арифметическое действие, в процессе которого складываются два числа, а их результатом будет новое – третье.

Формула сложения выражается так: a + b = c.

Вычитание – это арифметическое действие, в процессе которого из первого числа вычитается второе число, а итогом будет третье.

Формула сложения выражается так: a — b = c.

Операции производятся с однозначными цифрами. Редко встречаются двузначные. Потому что нужно, чтобы дети освоились, поняли технику.

Деление на двузначное число

Когда ученик 3-го класса усвоил деление на однозначное число, можно приступать к следующему этапу — работе с двузначными цифрами. Начинайте с простых, явных примеров, чтобы малыш понял алгоритм действий. Например, возьмите числа 196 и 28 и объясните принцип:

  1. Сначала подберите примерное число для ответа. Для этого выясните приблизительно, сколько цифр 28 поместится в 196. Для удобства можно округлять оба числа: 200:30. Получится не больше 6. Полученное число не нужно записывать, это только догадка.
  2. Проверяем результат умножением: 28х6. Получается 196. Предположения оказались верными.
  3. Запишите ответ: 196:28 =6.

Еще один вариант обучения: деление на двузначное число уголком. Такой способ больше подходит для работы с числами от четырех разрядов, то есть тысяч. Приведем простой пример:

Напишите на листе бумаги 4070, начертите уголок и подпишите делитель — 74.
Определите, с какого числа начнете делить. Спросите у ребенка, можно ли разделить 4 на 74, 40? В результате малыш поймет, что сначала нужно ограничиться числом 407. Очертите полученную цифру сверху полукругом. 0 останется в стороне.
Теперь нужно выяснить, сколько 74 поместится в 407. Действуем с помощью логики и проверки умножением. Получится 5. Записываем результат под уголком (под делителем).
Теперь умножаем 74 на 5 и записываем результат под делимым. Получится 370

Важно начинать запись с первого числа слева.

После записи нужно подвести горизонтальную черту и отнять 370 от 407. Получится 37.
37 разделить на 74 нельзя, поэтому вниз сносится оставшийся в верхнем ряду 0.
Теперь делим 370 на 74

Подбираем множитель (5) и записываем его под уголком.
Умножаем 5 на 74, записываем результат в столбик. Получится 370.
Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка. 4070:74=55. Частное смотрим под уголком.

Для проверки правильности решение произведите умножение: 74х55=4070.

Рекомендации родителям

Не стоит рассчитывать, что эти простые истины математики дадутся ребенку с легкостью. Даже если соседская девочка или сын сотрудницы освоил сложение и вычитание за один день, это не повод впадать в отчаяние. Во-первых, все дети разные и у всех индивидуальные особенности усвоения информации, а во-вторых, если кто-то что-то освоил быстрее, еще не значит, что учиться ему будет легче.

Кроме того, при обучении малыша родителям нужно следить за реакцией ребенка на это обучение. Если вы видите, что ему не интересно, попробуйте сменить тактику. Считайте конфеты, яблоки, книжки, можно вырезать одинаковые фигурки для обучения, а затем сделать из них праздничную гирлянду.

Если в определенный период времени ребенок отказывается учиться, у него плохое настроение или самочувствие, не настаивайте. Перенесите время урока на более благоприятный период. Зато у малыша не пропадет желание к учебе, как к чему-то неприятному и неизбежному. Ну и самое главное, проявляйте терпение к его стараниям и почаще хвалите

Для него это очень важно

Эта сложная наука – математика

Некоторым деткам научиться математическому счету бывает намного труднее, чем, например, научиться читать. Поэтому, чтобы у ребенка появилась так называемая «симпатия» к предмету, родителям придется постараться привить любовь ребенка к математике.

Некоторые родители не желают обременять себя подобными делами и перекладывают обучение вычислениям на плечи педагогов начальной школы. Безусловно, именно учителя и выполняют обучение счету детей, но родители не должны самоустраняться, а обязаны помогать ребенку, помогать находить ошибки, анализировать их.

Даже если вы решили воспользоваться услугами репетитора, заниматься с ребенком дома все равно придется, ведь учитель задает домашние задания, которые следует добросовестно выполнять. В противном случае знания, не подкрепленные практикой, очень быстро забудутся.

Проверки

Для того, чтобы быстро проверить правильность результатов нужно помнить две вещи:

  • Результатом сложения и вычитания могут быть отрицательные
  • Результаты сложения и вычитания двухзначных чисел не могут быть больше 200 и меньше – 200. Дело в том, что максимальное целое двузначное число это 99, а минимальное – 99. Наименьшее значение можно получить, если сложить два минимальных значения. Максимальное значение это сумма двух максимальных значений. Вот и получается 99+99=198 и -99-99=-198. А дробные приставки не дадут в сумме больше 2.

Что мы узнали?

Мы поговорили о сложении и вычитании двузначных чисел. Обговорили приемы сложения и вычитания двузначных чисел «в уме». Указали на методы определения грубых ошибок в вычислениях.

Тест по теме

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

История 1

Секунду назад я увидела, как пятилетний малыш уронил зеркало прямо посреди торгового зала. Осколки разлетелись по полу. Отец и мать опустились на пол возле мальчика и начали без лишних эмоций беседовать с ним о том, что он смог бы сделать сам, чтобы всё поправить.

Мать сказала малышу, что они могут спросить, есть ли в магазине щётка и совок, чтобы убрать осколки. Сын же, в свою очередь, спросил у отца, смогут ли они оплатить стоимость разбитого зеркала, если не будут покупать новые детские коньки, как планировали раньше.

Все консультанты застыли на месте, поражённые этой картиной, да и я почувствовала, что наше вмешательство будет лишним. Чёрт возьми! Как это, оказывается, легко! Случилось неприятное происшествие, и все трое в семье пытаются совместно найти выход из ситуации, ощущая взаимную помощь. Да, так и следует делать каждый раз. Но многие люди посмотрят на это в полном недоумении, ведь такое решение им в новинку.

История 2

В младших классах я дружила с одной девочкой и много раз сетовала моей маме на её поведение. Мне нравилось проводить время с ней, а она могла обмануть меня, часто вела себя неискренне, то уходила дружить с кем-то ещё, то опять приходила ко мне с предложением мира и дружбы.

И вот однажды эта девочка сказала мне, что нашей дружбе конец, и что она больше никогда не будет моей подругой. Помню, как прибежала домой вся в слезах, а моя мама процитировала высказывание, которое надолго отложилось у меня в памяти. «Судьба человека похожа на трамвай с пассажирами. Кто-то зайдёт, кто-то станет высаживаться. Кто-то будет ехать всю жизнь. А кто-то пробудет в этом трамвае совсем недолго. Но встретятся и такие люди, которых ты будешь вынуждена высадить сама, как кондуктор безбилетника».

История 3

Я помню как-то в раннем детстве, было ещё утро, а я поругался с моей мамой. Причина ссоры была пустяковая, но пока она провожала меня на уроки, я дулся и не проронил ни слова.

И вот мы с мамой вышли из автобуса. Перед тем как распрощаться и помахать рукой, мама повернулась ко мне и говорит: «Я тебя люблю». «А вот я тебя ненавижу», — вырвалось у меня от обиды. Удивительно, но мама не стала сердиться. Она просто тихонько ответила мне: «Не бросайся такими словами. Представь, что я вдруг попаду в аварию и это окажется наша последняя встреча. Разве тебе понравится, что самое последнее, что я услышу от тебя в этой жизни, это такая страшная фраза?».

Я давно уже вырос, но до сих пор, когда с кем-то прощаюсь, не допущу, чтобы мы разошлись, поругавшись или храня обиду. Ведь мы не можем быть уверены в том, увидим ли этого человека вновь.

Понравился наш контент? Подпишитесь на канал в .

Контрольные работы по математике для 3 класса — Математика 3 класс — 3 класс

КОНТРОЛЬНАЯ РАБОТА  5

Цель: проконтролировать усвоение приёма деления с остатком и его проверку, знание порядка действий в выражениях, умение решать задачи.

I вариант

1. Выполните деление с остатком и проверку к нему.

75 : 8                        85 : 20                        51 : 7

2. Вставьте числа в «окошки», чтобы получились верные равенства.

3. Найдите значения выражений.

56 : 2 – 36 : 12                                (39 + 33) : 24 · 9

48 + 32 : (64 : 8)                         93 – 3 · 8 : 6

4. Решите задачу.

Стекольщику нужно было вставить 96 стёкол. Он уже вставил в 14 окон по 3 стекла в каждое. Сколько стёкол осталось вставить стекольщику?

5. Решите задачу.

На тарелке было 48 блинов. Сколько блинов съели, если на тарелке осталось в 3 раза меньше блинов, чем было?

II вариант

1. Выполните деление с остатком и проверку к нему.

57 : 8                        74 : 7                        69 : 20

2. Вставьте числа в «окошки», чтобы получились верные равенства.

3. Найдите значения выражений.

80 + (24 – 4 · 5)                                42 : 3 + 72 : 24

78 – 8 · 8 : 2                                        24 + 36 : (54 : 9)

4. Решите задачу.

В большой корзине было 95 тюльпанов. Продавец сделал из них 12 букетов, по 7 тюльпанов в каждом букете. Сколько осталось тюльпанов?

5. Решите задачу.

На столе стояло 52 стакана с соком. Сколько стаканов с соком выпили, если на столе осталось в 4 раза меньше стаканов с соком, чем было первоначально?

КОНТРОЛЬНАЯ РАБОТА  6

Цели: проверить усвоение нумерации трёхзначных чисел; проверить усвоение вычислительных приёмов; проконтролировать навыки решения задач, построения отрезков.

I вариант

1. а) Вставьте в «окошки» пропущенные числа.

б) Запишите цифрами:

9 сот. 2 дес.                                8 сот.

4 сот. 3 ед.                                5 сот. 1 дес. 7 ед.

в) Представьте числа в виде суммы разрядных слагаемых.

510, 742.

2. Решите задачу.

3 набора красок стоят 72 рубля. Сколько стоят 4 таких набора красок?

3. Решите примеры.

549 + 1                        702 – 700                        60 : (26 + 4) · 2

800 – 1                        930 – 600                        42 + 54 : 3 · 2

600 + 50                        320 + 70                        71 – (28 – 17) · 6

4. Заполните пропуски нужными числами.

5. Начертите отрезок АВ = 6 см, а отрезок ВС в 2 раза длиннее. На сколько см длина отрезка ВС больше длины отрезка АВ?

II вариант

1. а) Вставьте в «окошки» пропущенные числа.

б) Запишите цифрами:

7 сот.                                5 сот 7 дес.

4 сот. 2 дес. 3 ед.                6 сот. 9 ед.

в) Представьте числа в виде суммы разрядных слагаемых.

490, 351.

2. Решите задачу.

72 стула расставили в 6 рядов, поровну в каждый ряд. Сколько стульев в 4 таких рядах?

3. Решите примеры.

659 + 1                        805 – 800                        96 : (41 – 9) · 3

900 – 1                        760 – 500                        36 + 60 : 4 · 2

400 + 80                        980 – 30                        72 – (44 + 16) : 4

4. Заполните пропуски нужными числами.

5. Начертите отрезок СД = 9 см, а отрезок АК в 3 раза короче. На сколько см длина отрезка СД больше длины отрезка АК?

КОНТРОЛЬНАЯ РАБОТА  7

Цель: проверить сформированность умений:

1) записывать и сравнивать трёхзначные числа;

2) складывать и вычитать трёхзначные числа;

3) решать задачи;

4) сравнивать единицы длины.

I вариант

1. а) Запишите число, в котором:

5 ед. III разряда и 2 ед. I разряда

7 ед. II разряда и 3 ед. I разряда

4 ед. III разряда

6 ед. III разряда и 9 ед. II разряда

б) Сравните числа:

567 … 601           300 … 299           110 … 101

2. Сравните (>, <, =).

5 м 4 дм … 540 см                        8 м 1 см … 8 м 1 дм

9 дм 2 см … 1 м                        604 см … 4 м 6 см

3. Решите примеры.

640 : 8 =                                 240 : 6 =

150 – 70 =                         560 : 8 =

440 : 20 =                        80 · 5 =

80 + 40 =                        20 · 6 =

4. Решите задачу.

В соревнованиях участвуют 310 мальчиков и 270 девочек. Гимнастов среди них было 250 человек, а остальные пловцы. Сколько пловцов участвуют в соревнованиях?

5. Решите примеры столбиком.

535 + 65                        756 – 628

198 + 672                963 – 817

189 + 467                707 – 629

II вариант

1. а) Запишите число, в котором:

9 ед. III разряда

7 ед. III разряда и 4 ед. II разряда

5 ед. II разряда и 2 ед. I разряда

8 ед. III разряда и 6 ед. I разряда

б) Сравните числа:

401 … 386           699 … 700           220 … 202

2. Сравните (>, <, =).

702 см … 2 м 7 см                        6 м 9 дм … 690 см

8 дм 3 см … 1 м                        4 м 5 см … 4 м 5 дм

3. Решите примеры.

630 : 7 =                                 90 + 7 =

210 : 3 =                                560 : 4 =

2 · 70 =                                360 : 4 =

170 – 80 =                         30 · 5 =

4. Решите задачу.

В музей поехали 250 первоклассников и 320 второклассников. Мальчиков среди них было 300 человек. Сколько девочек поехало в музей?

5. Решите примеры столбиком.

652 + 265                        683 – 134

363 + 498                        712 – 243

548 + 152                        622 – 355

Разряды чисел

Каждая цифра в записи многозначного числа занимает определённое место — позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом.

Счёт разрядов идёт справа налево. То есть, первая цифра справа в записи числа называется цифрой первого разряда, вторая цифра справа — цифрой второго разряда и т. д. Например, в первом классе числа  148 951 784 296,  цифра  6  является цифрой первого разряда,  9  — цифра второго разряда,  2  — цифра третьего разряда:

Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами:

  • Единицы называют  единицами первого разряда  (или простыми единицами) и пишутся на  первом  месте справа.
  • Десятки —  единицами второго разряда  и пишутся в числе на  втором  месте справа.
  • Сотни —  единицами третьего разряда  и пишутся на  третьем  месте справа.
  • Единицы тысяч —  единицами четвёртого разряда  и пишутся на  четвёртом  месте справа.
  • Десятки тысяч —  единицами пятого разряда  и пишутся на  пятом  месте справа.
  • Сотни тысяч —  единицами шестого разряда  и пишутся в числе на  шестом  месте справа и так далее.

Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.

Пример. Запишите цифрами число, которое содержит:

1)  37  единиц второго класса и  565  единиц первого класса;

2)  450  единиц второго класса и  9  единиц первого класса;

3)  8  единиц второго класса и  50  единиц первого класса.

Решение:

1)  37 565;

2)  450 009;

3)  8 050.

Все разрядные единицы, кроме простых единиц, называются составными единицами. Так, десяток, сотня, тысяча и т. д. — составные единицы. Каждые  10  единиц любого разряда составляют одну единицу следующего (более высокого) разряда:

10 единиц  =  1 десяток;
10 десятков  =  1 сотня;
10 сотен  =  1 тысяча;
10 тысяч  =  1 десяток тысяч;
10 десятков тысяч  =  1 сотня тысяч;
10 сотен тысяч  =  1 тысяча тысяч (1 миллион);

и так далее.

Любая составная единица по сравнению с другой единицей, меньшей её называется единицей высшего разряда, а по сравнению с единицей, большей её, называется единицей низшего разряда. Например, сотня является единицей высшего разряда относительно десятка и единицей низшего разряда относительно тысячи.

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, надо отбросить все цифры, означающие единицы низших разрядов и прочитать число, выражаемое оставшимися цифрами.

Например, требуется узнать, сколько всего сотен содержится в числе  6284,  т. е. сколько сотен заключается в тысячах и в сотнях данного числа вместе.

В числе  6284  на третьем месте в классе единиц стоит цифра  2,  значит в числе есть две простые сотни. Следующая влево цифра —  6,  означает тысячи. Так как в каждой тысяче содержится  10  сотен то, в  6  тысячах их заключается  60.  Всего, таким образом, в данном числе содержится  62  сотни.

Цифра    в каком-нибудь разряде означает отсутствие единиц в данном разряде.

Например, цифра  0  в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит  0,  при чтении числа ничего не произносится:

24 527  — двадцать четыре тысячи пятьсот двадцать семь.

20 507  — двадцать тысяч пятьсот семь.

Сложение двузначных чисел

Сложение двузначных чисел это всем привычный процесс, который можно выполнить в столбик или посчитать строкой «в уме». Но при этом можно считать быстро и в строку.

Рассмотрим пример: 18+29 – посчитаем сначала единицы, а затем десятки, после чего сложим результаты. Похожий подход используют при вычислениях в столбик.

9+8=17

10+20=30

30+17=47 – такой расчет займет меньше минуты, что сэкономит время для решения куда более важных задач.

Этот вариант наиболее универсален, но бывают ситуации, когда можно еще больше увеличить скорость счета. Наиболее любимый составителями примеров вариант: единицы двузначных чисел в сумме дают 10.

18+12=10+10+(8+2)=30 – просто к сумме десятков двух чисел прибавляется 1

Еще один вариант это два числа, которые ученикам психологически сложно считать. Не известно почему, но некоторые сложения тяжело даются учащимся.

Как правило, это: 7+6 и 8+7. Со временем ребята привыкают к тому, что первое равняется 13, а второе 15. Но лучше заучить это и не забивать голову.

Используются эти знания примерно так: 17+16=10+10+7+16=20+13=33

Многозначные числа

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.

  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше — записывайтесь на наш курс: Ускоряем устный счет — НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

Цель курса: развить память и внимание у ребенка так, чтобы ему было легче учиться в школе, чтобы он мог лучше запоминать. После прохождения курса ребенок сможет:

После прохождения курса ребенок сможет:

  1. В 2-5 раз лучше запоминать тексты, лица, цифры, слова
  2. Научится запоминать на более длительный срок
  3. Увеличится скорость воспоминания нужной информации

Супер-память за 30 дней

Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Система счисления

Для начала решим, какие числа в математики считаются двузначными. По слову сразу ясно, что это числа, которые содержат два значащих знака. Значащие позиции считаются от единиц вверх, по есть по готовому числу справа налево.

Сначала идут единицы, затем десятки, сотни и так далее. При этом знаки могут распространяться и +влево от единиц в виде десятичных дробей после запятой.

Такая система называется позиционной. Каждая цифра в ней меняет свое значение в зависимости от занимаемой позиции. Например, есть число 23, а есть 32 и это разные числа, которые были записаны при помощи одинаковых цифр. Благодаря такому подходу можно записать любое по своей величине число с помощью всего 9 цифр от 1 до 0.

Отдельно стоит сказать, что значащей считается любая позиция, отличная от нуля. В любом числе незначащих позиций бесконечно много. Мы пишем 23, но понимаем, что в этом числе 0 сотен и тысяч, то есть можно записать его, как 0023.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector