Как научиться делить столбиком (уголком): примеры с решениями и объяснением

Содержание:

Методика обучения делению в столбик

Чтобы приступить к этому арифметическому действию, нужно познакомить ребенка с названием элементов при делении.

Делимое – число, что подвергается делению, делится на делитель, в результате получается частное.

Объясняют ему саму суть операции деления столбиком. Это такое действие в математике, которое применяют для разделения чисел за счет дробления самого процесса деления на более простые шаги.

Деление в столбик на конкретном примере

Метод деления, основанный на конкретном примере, очень распространен и используется школьниками в дальнейшей учебе. Ребенку предлагается разделить число 945 на 5 в столбик.

Шаг 1. На этом этапе нужно попросить ребенка показать компоненты деления. Если он правильно усвоил выше изложенный материал, то без особых усилий определит: 945 – это делимое, 5 – делитель, результат деления – частное. Собственно, это то, что и необходимо найти.

Шаг 2. Сначала ребенка просят записать рядом 945 и 5, а потом делят их «уголком».

Шаг 3. Следующий этап, просят ребенка рассмотреть делимое и, продвигаясь вправо, предлагают определить самое меньшее число, что больше делителя. Ученик определяет числа: 9, 94 и 945. Самым меньшим из них является 9. Потом спрашивают, сколько раз 5 помещается в числе 9? Ребенок дает ответ, что один раз. Значит, пишут 1 под чертой – первую цифру искомого частного.

Вот и столбик скоро получится.

Шаг 4. На следующем этапе предлагают ребенку умножить 1 на 5 и получают 5. Просят записать результат, который получили, под первой цифрой делимого, и из 9 вычитают 5. Спрашивают ребенка о результате и получают 4.

Здесь важно объяснить ему, что результат вычитания всегда будет меньше делителя. А когда наоборот, значит, неправильно удалось определить, сколько раз 5 содержится в 9

Так как результат получился меньше делителя, его увеличивают с помощью следующей цифры делимого. Ребенок определяет 4 и пишет к четверке.

Шаг 5. Дальше задают ему знакомый вопрос о том, сколько раз 5 помещается в 44? Ученик отвечает, что восемь раз. Тогда предлагают записать восьмерку к единице под чертой. Объясняют ребенку, что это будет следующая цифра искомого частного. Просят умножить 5 на 8. Получается 40, и записывают эту цифру под 44.

Шаг 6. На следующем этапе вся операция повторяется. Ученик вычитает 40 из 44, и получает 4 (4 меньше 5, значит, ребенок все делает правильно). Теперь предлагают использовать последнюю цифру делимого — 5, просят приписать ее вниз к четверке и получается число 45.

Снова задают тот же вопрос. Сколько раз 5 помещается в 45? Ребенок отвечает, что девять раз.

Шаг 7. Просят его записать девятку под чертой. Предлагают умножить 5 на 9. Ребенок говорит, что получает в результате 45 и записывает в столбик под 45. Дальше проводит вычитание 45 из 45, и получает 0. Ему объясняют, что это был пример деления числа без остатка.

Когда ребенок неплохо умеет пользоваться таблицей умножения, деление в столбик для него простой задачей

Очень важно с помощью постоянных примеров и упражнений закрепить полученный навык

Как научить ребенка делить?

Существуют некоторые достаточно тривиальные подходы, которые используются почти всеми родителями чтобы научить ребенка делить:

Речь идет о методе деления каких-либо конкретных объектов между людьми. То есть, вам достаточно только предложить вашему ребенку разделить между вами какие-либо конфеты или яблоки, и он сможет сделать это легко. Теперь только останется объяснить ему, что таким образом он поделил некоторое количество на два и научить его записывать действие цифрами. Объяснить вы сможете, задавая ему логические вопросы. Для начала пусть он ответит на вопрос о том, сколько было конфет с самого начала. Потом задайте ему вопрос о том, сколько было человек. В результате вы получите одну большую цифру и одну поменьше. Получается, что деление необходимо производить из большого числа с помощью маленького.

Чтобы закрепить и понять, как научить ребенка делить по-настоящему, вы должны предложить ему произвести деление различного количества предметов между несколькими людьми.

Действенные методы того, как ребенка научить делению, можно почерпнуть из занимательной арифметики Энгельмана, где в интерактивной и понятной форме излагаются элементарные действия. В частности, учитывая то, что деление по программе проходят после умножения, Энгельман предлагает объяснять его, как умножение наоборот. Для примера можно нарисовать восемь кубиков по два в столбик и объяснить ребенку, что если восемь разделить на два, то получится четыре, то есть по четыре кубика в каждом столбике или колонке. А вот если восемь разделить на четыре, то получится по два кубика в каждом ряду.

Целесообразно также будет подключить более практические навыки чтобы научить ребенка делить. Например, взять десять вишен и попросить ребенка поделить их между вами поровну. Он может начать деление по одной, откладывая по очереди вам и себе по вишенке. Затем получившиеся кучки можно будет посчитать и убедиться, что он действительно поделил правильно и десять вишен между двумя участниками дадут каждому по пять ягодок. После того, как он освоит сам механизм деления на осязаемых предметах, вы можете переходить к абстрактным понятиям.

Также полезно будет разъяснить ребенку обратную связь между умножением и делением. Не забывайте постоянно проверять знания ребенка, пока деление простых чисел не будет проходить автоматически.

Алгоритм деления чисел в столбик, обучение ребёнка. Особенности деления многозначных чисел и многочленов.

Школа даёт ребёнку не только дисциплину, развитие талантов и навыков общения, но и знания по фундаментальным наукам. Одна из них — математика.

Хотя программа и нагрузка на учеников часто меняются, но деление в столбик чисел с разным количеством разрядов остаётся неприступной с первого захода вершиной для многих из них. Потому без тренировок дома с родителями часто не обойтись.

Дабы не упустить время и предотвратить образование кома непонятного у ребёнка в математике, освежите в памяти свои знания по делению чисел столбиком. Статья вам в этом поможет.

Как выучить деление и умножение с ребенком

Самый элементарный метод, с помощью которого можно научиться умножать и делить, представлен наглядной демонстрацией разделения предметов на равные части или же увеличения этих долей. В роли предметов, которые используются в качестве обучающего реквизита, должны выступать предметы, вызывающие в уме школьника интерес.

Умножение и деление однозначных чисел

Для деления однозначных чисел на однозначные лучше всего использовать таблицу умножения, но перед этим следует объяснить своему чаду, что деление – это действие, противоположное умножению. Сделать это можно с помощью любого правильного деления натуральных чисел, к примеру, 2 умножить на 4 будет 8. Придерживаясь данного примера, показать карапузу делительный процесс:

  • разделить 8 на любой множитель, например, на число 2;
  • в ответе получится 4, то есть множитель, который не был использован при делении.

Таким методом также делятся многозначные (двухзначные) числа на однозначные. А для того, чтобы освоить процесс умножения однозначных чисел, вместе с малышом достаточно лишь постепенно учить таблицу умножения.

Алгоритм деления однозначных чисел

Умножение и деление двузначных чисел

В целях разъяснения дошкольнику процесса умножения двухзначных цифр опытные педагоги рекомендуют прибегать к итальянскому методу или методу «решетки». Для начала следует на листе бумаги начертить мини-таблицу два на два: одно число записать по длине, а другое – по ширине таблицы. Каждую клетку нужно разделить по диагонали ровной линией, после чего в образовавшиеся треугольники вписать результат умножения чисел (отдельно десятки, отдельно единицы).

Далее вместе с ребенком сложить «произведения» строго по диагонали, результат подписать. Произведение будет равно значению, которое образуется в процессе чтения цифр снизу вверх и направо.

Некоторые родители предпочитают использовать китайско-японский способ умножения в процессе обучения своих детей. Он может показаться более сложным, чем метод «решетки», но на деле все не так страшно. Следует всего лишь нарисовать цифры линиями, посчитать «узлы», которые образовались при пересечении, и «собрать» из них произведение. В процессе подсчета учитываются следующие моменты:

  • количество узлов, которые получились при пересечении линий, обозначающих десятки перемножаемых чисел = количество сотне произведения;
  • узлы, получившиеся при пересечении прямых, обозначающих единицы и десятки умножаемых цифр = количество десятков произведения.

Обратите внимание! Что касается количества узлов, образовавшихся путем пересечения линий, которые обозначают единицы умножаемых чисел, то оно равняется количеству единиц произведения. Если ребенок еще не проходил метод деления двухзначных цифр «столбиком», то нужно объяснить ему на более простом языке

Для примера можно взять 66/3. Число 64 раскладываем на цифры, которые устно можно поделить на 3:

Если ребенок еще не проходил метод деления двухзначных цифр «столбиком», то нужно объяснить ему на более простом языке. Для примера можно взять 66/3. Число 64 раскладываем на цифры, которые устно можно поделить на 3:

64 = 30 + 30 + 6.

Малышу сразу все станет понятно: 30 и 6 мы сможем поделить на 3, после чего нужно будет только сложить результаты, т. е. 66 / 3 = 10 (получили в процессе деления 30 на 3) + 10 (30 поделили на 3) + 2 (6 поделили на 3).

66 / 3 = 22. Здесь не был использован метод разделения в столбик, но карапуз сразу поймет ход рассуждений и выполнит простые вычисления без труда.

Деление периодических дробей

В этом случае не удастся получить точный ответ при делении в столбик. Как решать пример, если встретилась дробь с периодом? Здесь полагается переходить к обыкновенным дробям. А потом выполнять их деление по изученным ранее правилам.

Например разделить нужно 0,(3) на 0,6. Первая дробь — периодическая. Она преобразуется в дробь 3/9, которая после сокращения даст 1/3. Вторая дробь — конечная десятичная. Ее записать обыкновенной еще проще: 6/10, что равно 3/5. Правило деления обыкновенных дробей предписывает заменять деление умножением и делитель — обратным числом. То есть пример сводится к умножению 1/3 на 5/3. Ответом будет 5/9.

Деление чисел

Итак, немного теории, а затем практика! Что такое деление? Деление – это разбивание на равные части чего-либо. То есть это может быть пакет конфет, который нужно разбить на равные части. Например, в пакетике 9 конфет, а человек которые хотят их получить – три. Тогда нужно разделить эти 9 конфет на трех человек.

Записывается это так: 9:3, ответом будет цифра 3. То есть деление числа 9 на число 3 показывает количество чисел три содержащихся в числе 9. Обратным действием, проверочным, будет умножение. 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Для начала обозначим имена каждому компоненту примера. 12 – делимое, то есть. число которое делиться на части. 6 – делитель, это число частей, на которое делится делимое. А результатом будет число, имеющее название «частное».

Поделим 12 на 6, ответом будет число 2. Проверить решение можно умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что же такое деление с остатком? Это то же самое деление, только в результате получается не ровное число, как показано выше.

Например, поделим 17 на 5. Так как, наибольшее число, делящееся на 5 до 17 это 15, то ответом будет 3 и остаток 2, а записывается так: 17:5=3(2).

Например, 22:7. Точно так же определяемся максимально число, делящееся на 7 до 22. Это число 21. Ответом тогда будет: 3 и остаток 1. А записывается: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делиться ли число на 3 или 9 без остатка, то вам потребуется:

  1. Найти сумму цифр делимого.

  2. Поделить на 3 или 9 (в зависимости от того, что вам нужно).

  3. Если ответ получается без остатка, то и число поделится без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится как на 3, так и на 9. Число 18:9=2, 18:3=6. Поделено без остатка.

Например, число 63. Сумма цифр 6+3 = 9. Делится как на 9, так и на 3. 63:9=7, а 63:3=21.Такие операции проводятся с любым числом, чтобы узнать делится ли оно с остатком на 3 или 9, или нет.

Как делить в столбик четырехзначные, многозначные большие числа, многочлены на многочлены: примеры, объяснение

на доске решены примеры на деление столбиком трёх- и более значных чисел

В случае деления четырёхзначного числа на любое, которое содержит до 4 порядков одновременно, обратите внимание ребёнка на нюансы:

  • определение правильного количества порядков после действия деления. Например, в примере 6734:56 должно получится двузначное целое число в графе «частное», а в примере 8956:1243 — однозначное целое,
  • появление нулей в частном. Когда в ходе решения при переносе следующего числа делимого результат оказывается меньше делителя,
  • проверку полученного результата посредством выполнения действия умножения. Этот нюанс актуален для деления больших чисел без остатка. Если последний присутствует, то советуйте ребёнку проверить себя и ещё раз разделить числа в столбик.

Ниже пример решения.

алгоритм деления столбиком четырёхзначного числа

пример деления столбиком четырёхзначного числа на двузначное

Для больших многозначных чисел, которые делятся на конкретные значения меньше или равные им по количеству знаков, актуальны все алгоритмы, рассмотренные выше.

Ребёнку следует быть особенно внимательным в таких случаях и правильно определять:

  • количество знаков у частного, то есть результата
  • цифры у делимого для первого действия
  • правильность переноса остальных чисел

Примеры подробного решения ниже.

примеры деления столбиком многочленов

При совершении действия деления над многочленами обращайте внимание детей на ряд особенностей:

  • у действия может быть остаток либо отсутствовать. В первом случае запишите его в числителе, а делитель в знаменателе,
  • для совершения действия вычитания дописывайте в многочлен недостающие степени функции, умноженные на ноль,
  • совершайте преобразование многочленов путём выделения повторяющихся дву-/многочленов. Тогда их сократите и получится результат без остатка.

Ниже ряд подробных примеров с решениями.

примеры деления многочленов в столбик

Разбор примеров на деление столбиком на двузначное число

Сначала рассмотрим простые случаи деления, когда в частном получается однозначное число.

Первое неполное делимое 265. Больше в делимом цифр нет. Значит в частном будет однозначное число.

Чтобы было легче подобрать цифру частного, разделим 265 не на 53, а на близкое круглое число 50. Для этого 265 разделим на 10, будет 26 (остаток 5). И 26 разделим на 5, будет 5 (остаток 1). Цифру 5 нельзя сразу записывать в частном, поскольку это пробная цифра. Сначала нужно проверить, подойдет ли она. Умножим 53*5=265. Мы видим, что цифра 5 подошла. И теперь можем ее записать в частном под уголок. 265-265=0. Деление выполнено без остатка.

Значение частного чисел 265 и 53 равно 5.

Иногда при делении пробная цифра частного не подходит, и тогда ее нужно менять.

В частном будет однозначное число. 

Чтобы было легче подобрать цифру частного, разделим 184 не на 23, а на 20. Для этого разделим 184 на 10, будет 18 (остаток 4). И 18 разделим на 2, будет 9. 9 – это пробная цифра, мы ее сразу писать в частном не будем, а проверим, подойдет ли она. Умножим 23*9=207. 207 больше, чем 184. Мы видим, что цифра 9 не подходит. В частном будет меньше 9. Попробуем, подойдет ли цифра 8. Умножим 23*8=184. Мы видим, что цифра 8 подходит. Можем ее записать в частном. 184-184=0. Деление выполнено без остатка.

Значение частного чисел 184 и 23 равно 8.

Рассмотрим более сложные случаи деления.

Первое неполное делимое – 76 десятков. Значит, в частном будут 2 цифры.

Определим первую цифру частного. Разделим 76 на 24. Чтобы легче было подобрать цифру частного, разделим 76 не на 24, а на 20. То есть нужно 76 разделить на 10, будет 7 (остаток 6). И 7 разделим на 2, получится 3 (остаток 1). 3 – это пробная цифра частного. Сначала проверим, подойдет ли она. Умножим 24*3=72 . 76-72=4. Остаток меньше делителя. Значит, цифра 3 подошла и теперь мы ее можем записать на месте десятков частного. 72 пишем под первым неполным делимым, между ними ставим знак минус, под чертой записываем остаток.

Продолжим деление. Перепишем в строку с остатком цифру 8, следующую за первым неполным делимым. Получим следующее неполное делимое – 48 единиц. Разделим 48 на 24. Чтобы было легче подобрать цифру частного, разделим 48 не на 24, а на 20. То есть разделим 48 на 10, будет 4 (остаток 8). И 4 разделим на 2, будет 2. Это пробная цифра частного. Мы должны сначала проверить, подойдет ли она. Умножим 24*2=48. Мы видим, что цифра 2 подошла и, значит, можем ее записать на месте единиц частного. 48-48=0, деление выполнено без остатка.

 Значение частного чисел 768 и 24 равно 32.

Первое неполное делимое – 153 сотни, значит, в частном будут три цифры.

Определим первую цифру частного. Разделим 153 на 56. Чтобы легче было подобрать цифру частного, разделим 153 не на 56, а на 50. Для этого разделим 153 на 10, будет 15 (остаток 3). И 15 разделим на 5, будет 3. 3 – это пробная цифра частного. Помните: ее нельзя сразу записывать в частном, а нужно сначала проверить, подойдет ли она. Умножим 56*3=168. 168 больше, чем 153. Значит, в частном будет меньше, чем 3. Проверим, подойдет ли цифра 2. Умножим 56*2=112. 153-112=41. Остаток меньше делителя, значит, цифра 2 подходит, ее можно записать на месте сотен в частном.

Образуем следующее неполное делимое. 153-112=41. Переписываем в ту же строку цифру 4, следующую за первым неполным делимым. Получаем второе неполное делимое  414 десятков. Разделим 414 на 56. Чтобы удобнее было подобрать цифру частного, разделим 414 не на 56, а на 50. 414:10=41(ост.4). 41:5=8(ост.1). Помните: 8 – это пробная цифра. Проверим ее. 56*8=448. 448 больше, чем 414, значит, в частном будет меньше, чем 8. Проверим, подойдет ли цифра 7. Умножим 56 на 7, получится 392. 414-392=22. Остаток меньше делителя. Значит, цифра подошла и в частном на месте десятков можем записать 7.

Пишем в строку с новым остатком 4 единицы. Значит следующее неполное делимое – 224 единицы. Продолжим деление. Разделим 224 на 56. Чтобы легче было подобрать цифру частного, разделим 224 на 50. То есть сначала на 10, будет 22 (остаток 4). И 22 разделим на 5, будет 4 (остаток 2). 4 – это пробная цифра, проверим ее, подойдет ли она. 56*4=224. И мы видим, что цифра подошла. Запишем 4 на месте единиц в частном. 224-224=0, деление выполнено без остатка.

Значение частного чисел 15344 и 56 равно 274.

Разделяем столбиком – легко и быстро

Перед тем, как начинать обучение следует вспомнить с ребенком, какое название имеет каждое число в процессе операции разделения. Главное, научиться быстро и безошибочно научиться определять данные категории.

Наглядный пример:

Попробуем разделить 938 на 7. В этом приведенном примере число 938 будет являться делимым, а число 7 будет делителем. В результате действия, ответ будет называться частное.

  1. Необходимо записать числа, разделив их «уголком».
  2. Предложите ученику из наименьшего числа делимого выбрать то, что больше делителя. Из цифр 9, 3, 8, наибольшим будет цифра 9. Предложите проанализировать, сколько семерок может содержать в цифре 9. Одним правильным ответом здесь будет только один. Первым результатом записываем 1.
  3. Оформляем деление в столбик.

Умножим делитель 7 на 1, ответ будет 7. Полученный результат вписываем под первое число нашего делимого, затем вычитаем в столбик. Таким образом, из 9 отнимаем 7 и в ответе получаем 2. Это тоже записываем.

  1. Видим число, получившееся меньше делителя, поэтому увеличиваем его. Чтобы это сделать, объединим его вместе с неиспользованным числом делимого, то есть с цифрой 3. Дописываем 3 к полученной 2.
  2. Затем анализируем сколько раз делитель 7 будет содержаться в числе 23. Ответ 3 раза и фиксируем его в частном. Результат произведения 7 на 3 (21) вписываем снизу в столбик под число 23.
  3. Остается только найти последнее число частного. Применяя тот же алгоритм, продолжает вычисления в столбике. Вычитает в столбике 23-21 получает разницу, равной числу 2. Из всего делимого, у нас остается только неиспользованное число 8. Его объединяем с полученным результатом 2, получаем в ответе 28.
  4. В заключение анализируем, какое количество, раз делитель 7 содержится в полученном нами числе. Правильный ответ 4 раза. Ее мы вписываем в результат. В итоге наш ответ, полученный при процессе деления равен 134.

Самым наиболее главным при обучении ребенка методу деления, будет усвоение и четкое понимание алгоритма действий, ведь на самом деле он предельно прост.

Если ваш ребенок отлично умеет оперировать таблицей умножения, то с «обратным» делением у него не должны возникнуть трудности

Поэтому очень важно все время тренировать полученные навыки. Не стоит останавливаться на достигнутом

Для легкого обучения юного ученика методу деления следует:

  • в возрасте трех лет правильно усвоить термины «целое» и «часть». Должно сформироваться понимание понятия целого, в качестве неразделимой категории, а также восприятие отдельных частей целого в понятии самостоятельного объекта.
  • правильно понимать и разбираться в методах деления и умножения.

Чтобы занятия доставили ребенку удовольствие, следует возбуждать интерес к математике в ситуациях в быту, а не только в процессе учебы.

Поэтому тренируйте наблюдательность у ребенка, придумывайте аналогии математических действий во время игр, в процессе конструирования либо же в простых наблюдениях за природой.

Деление детям дается совсем не просто, потому, что данная математическая операция требует дополнительных разъяснений. Как правило, деление лучше усваивается, когда для этого создается благоприятная обстановка. Чтобы доходчивее можно было разъяснять материал, необходимо знать, как научить ребенка делить самым эффективным и легким способом. Также сделайте скидку на возраст ребенка, в котором вы взялись ему преподавать деление.

Примеры деления в столбик на двузначное число

Рассмотрим некоторые примеры. Они довольно простые и помогут понять основные моменты данного способа.

Найдём значение частного чисел 265 и 53:

Найдем результат деления чисел 624 и 52:

Рассмотрим более сложные случаи деления в столбик. Найдем значение частного чисел 1610 и 35:

Деление пятизначного числа на двузначное. Узнаем значение частного чисел 10150 и 35:

Пример 5

Деление многозначного числа на двузначное с остатком. Вычислим, чему будет равно частное чисел 1978 и 38:

Деление на двузначное число можно выполнять в столбик и устно, но многозначные числа устно считать намного сложнее. Немногие школьники могут похвастаться подобными умениями. 

Освоение процесса деления поможет школьникам в дальнейшем обучении. Так же существует немало тренажеров и онлайн-калькуляторов, которые можно использовать в свою пользу.

Предыдущая
МатематикаФормулы двойного угла — значения функций, свойства и примеры решений
Следующая
МатематикаПоказательные уравнения — алгоритмы и примеры вычисления

Обучение делению чисел столбиком с нолями

Деление чисел с нолями идентично обычному делению. Родителям нужно объяснить ребенку основные нюансы:

  • Расскажите, что если в конце делимого и делителя есть ноли, то их можно зачеркивать в уме. Предложите школьнику зачеркивать их простым карандашом для понимания. Дальше нужно делить, как и в обычных примерах. Например, если 1200 нужно разделить на 400, то ребенок может сократить пример, убрав два 0 у обоих чисел. А в примере деления 15600 на 560 можно сократить только по одному 0.
  • Объясните ученику, что если 0 есть только в делителе, то его нельзя сокращать.

Чтобы лучше усваивать материал, можно решить простой пример деления:

  • Запишите в тетради пример: 100 разделить на 10. Это легкий пример, так как при сокращении нолей он представлен так: 10 разделить на 1.
  • Ребенку следует под делителем написать цифру 10. Так как при умножении 1 на 10 получается требуемый результат. Под делимым ребенку нужно записать 10. Остатка у этого примера нет.

Предложите ребенку легкие примеры такого типа:

  • 200 разделить на 20;
  • 300 разделить на 30;
  • 400 разделить на 40;
  • 500 разделить на 50;
  • 600 разделить на 60;
  • 700 разделить на 70.

Далее можно переходить к сложным примерам. Но только после того, как ребенок усвоит результат.

Что нужно для освоения деления в младшем школьном возрасте

Деление это не первое арифметическое действие, которое осваивают дети. Поэтому, прежде чем браться за делимое-делитель-частное, нужно обязательно выяснить, знает ли ребёнок разряды чисел и понимает ли принципы:

  • сложения;
  • вычитания;
  • умножения.

Эффективные способы объяснения деления школьникам

Все способы объяснения можно условно поделить на академичные и образные. Первые опираются на цифры, то есть записываются в виде арифметических примеров, вторые на конкретные предметы: конфеты, мячи и т. д., которые умозрительно делятся между людьми, игрушками.

В работе с учениками начальной школы эффективным будет синтетический способ, совмещающий опору на образы и цифры одновременно.

Деление на основе знания таблицы умножения

Для понимания сути деления стоит обратиться к вычислениям с опорой на таблицу умножения.

Инструкция:

  1. Записываем пример: 2 х 5 = 10.
  2. Берём 10 монет и просим поделить их на двоих получается две стопки по 5 монет.
  3. Далее 10 монет делим на пятерых получается 5 стопок по 2 монеты.
  4. Вывод при делении мы выясняем, сколько раз каждый множитель помещается в произведении.

На этом приёме разъясняем понятийную базу: то число, которое делится, называется делимое, то число, на которое делится делителем, а результат частным.

Поскольку деление обратно умножению, то второе может проверить результат первого.

Инструкция:

  1. Делимое делим на делитель, то есть 10 : 2.
  2. Получаем частное 5.
  3. Проверяем умножением, то есть частное умножаем на делитель 5 х 2.
  4. Получаем 10, что в исходном примере является делимым.

Деление двузначных чисел на однозначные

Чтобы разделить двузначное число, не являющееся произведением таблицы умножения, на однозначное, нужно каждую цифру делимого разделить на делитель и записать первое частное десятками, а второе единицами. Например, 86 : 2.

Инструкция:

  1. Делим 8 на 2. Получаем 4.
  2. Делим 6 на 2. Получаем 3.
  3. Ответ 43.
  4. Проверяем 43 х 2 = 86.

Деление способом группирования

Суть этого способа деления заключается в подсчёте количества групп равных делителю, которые помещаются в делимое. Результат будет частным.

Инструкция:

  1. Задача состоит в распределении мячей между командами. Решаем пример 30 : 3.
  2. Распределим 30 мячей между тремя командами обводим тройки.
  3. Считаем количество групп троек 10. Каждой команде достанется по 10 мячей.
  4. Вывод 30 : 3 = 10.

Как объяснить деление в столбик

Поскольку деление может быть без остатка, а может быть с остатком, рассмотрим два варианта объяснение такого арифметического действия.

Деление без остатка

Инструкция:

  1. Решим пример 396 : 3.
  2. Записываем делимое, справа рисуем повёрнутую на левый бок букву Т и в верхнем окошке вписываем делитель 3.
  3. Начинаем с сотен. 3 делится на 3 без остатка, получаем 1. Вписываем результат под делителем.
  4. Проверяем 1 х 3 получаем 3, вписываем 3 под сотней и производим вычитание. Остатка нет. Подводим черту.
  5. Приступаем к десяткам. 9 : 3 получаем 3. Записываем 3 рядом с 1.
  6. Проверяем 3 х 3 получаем 9, вписываем 9 под чертой, производим вычитание. Остатка нет. Подводим черту.
  7. Работаем с единицами. 6 : 3 получаем 2. Записываем 2 рядом с 13.
  8. Проверяем 2 х 3 получаем 6, вписываем 6 под чертой, вычитаем. Остатка нет.
  9. Результат 132.

Деление с остатком

Инструкция:

  1. Решим пример 90 : 4.
  2. В десятках помещается две четвёрки. В частном запишем значение 2, затем перемножаем 2 х 4 = 8, вписываем под 9 полученное произведение, вычитаем и получаем 1.
  3. Сносим к разности 0, получаем 10. В 10 помещается 2 четвёрки, 10 8 = 2. Это остаток.
  4. 2 на 4 не делится. Ставим десятичную запятую в частном и добавляем 0 к 2.
  5. 20 : 4 = 5. Записываем частное после запятой.
  6. Проверяем умножением 5 х 4 = 20. 20 20 = 0 остатка нет.

Деление на двузначные числа

Если в делителе есть десятки, сотни, то для облегчения решения делитель можно упростить, разбив на единицы (десятки).

Инструкция:

  1. Решим пример 405 : 15.
  2. Разобьём 15 на единицы, на 5 и 3 их произведение равно 15.
  3. Теперь решаем два примера. Сначала 405 : 5. Частное 81.
  4. Затем 81 : 3. Частное 27.
  5. Результат 405 : 15 = 27.

Видео: тренажёр быстрого деления в уме для школьников

Объяснить деление можно не только школьнику, но и дошкольнику. Причём не только в условиях детского сада, школы, но и дома. Для этого нужно убедиться, что ребёнок имеет опорные знания, и у родителя есть запас времени, терпения для регулярных занятий со своим чадом.

Что делать, если разделить нужно десятичную дробь?

Опять же, это число похоже на натуральное, если бы не запятая, отделяющая целую часть от дробной. Это наводит на мысль о том, что деление десятичных дробей в столбик подобно тому, которое было описано выше.

Единственным отличием будет пункт с запятой. Ее полагается поставить в ответ сразу, как только снесена первая цифра из дробной части. По-другому это можно сказать так: закончилось деление целой части — поставь запятую и продолжай решение дальше.

Во время решения примеров на деление в столбик с десятичными дробями нужно помнить, что в части после запятой можно приписать любое количество нолей. Иногда это нужно для того, чтобы доделить числа до конца.

Примеры на деление пятизначного числа на двузначное с остатком с ответами:

Те же самые примеры на деление одного числа на другое с остатком, что приведены выше, но с ответами для быстрой проверки решений.

32735 : 80 = 409 остаток 1521819 : 61 = 357 остаток 4291211 : 75 = 1216 остаток 1167767 : 59 = 1148 остаток 3534859 : 12 = 2904 остаток 1145413 : 13 = 3493 остаток 429455 : 89 = 330 остаток 8566956 : 65 = 1030 остаток 674032 : 10 = 7403 остаток 274058 : 54 = 1371 остаток 2446414 : 37 = 1254 остаток 1672487 : 43 = 1685 остаток 3280225 : 15 = 5348 остаток 566022 : 96 = 687 остаток 7040872 : 36 = 1135 остаток 1299781 : 91 = 1096 остаток 4547801 : 46 = 1039 остаток 787149 : 66 = 1320 остаток 2982598 : 85 = 971 остаток 6324097 : 53 = 454 остаток 3566267 : 92 = 720 остаток 2788937 : 43 = 2068 остаток 1365735 : 62 = 1060 остаток 1534123 : 56 = 609 остаток 1979891 : 13 = 6145 остаток 6 59794 : 93 = 642 остаток 8895895 : 74 = 1295 остаток 6545537 : 56 = 813 остаток 989585 : 79 = 1133 остаток 7835999 : 18 = 1999 остаток 1754083 : 14 = 3863 остаток 180896 : 53 = 1526 остаток 1873005 : 26 = 2807 остаток 2357791 : 55 = 1050 остаток 4112463 : 37 = 336 остаток 3182498 : 15 = 5499 остаток 1319566 : 79 = 247 остаток 5368759 : 71 = 968 остаток 3127372 : 45 = 608 остаток 1234725 : 97 = 357 остаток 9667967 : 73 = 931 остаток 489245 : 58 = 1538 остаток 4177507 : 68 = 1139 остаток 5594375 : 85 = 1110 остаток 2541645 : 59 = 705 остаток 5098706 : 43 = 2295 остаток 2142941 : 39 = 1101 остаток 230258 : 47 = 643 остаток 3798835 : 85 = 1162 остаток 6525906 : 33 = 785 остаток 1

Сгенерировано примеров на деление пятизначного числа на двузначное с остатком с ответами в качестве тренажера по математике: 50

Скачать

Распечатать

На этой странице сайта результат работы генератора случайных примеров по математике на деление пятизначного числа на двузначное с остатком для тренировки арифметических действий учениками 1, 2, 3, 4 классов средней общеобразовательной школы.

Тренировочные примеры по математике на деление пятизначного числа на двузначное с остатком для учеников первого, второго, третьего, четвертого класса можно отображать для распечатки или скачивания в два, три или четыре столбца.

Математические примеры на деление пятизначного числа на двузначное с остатком, которые приведены на этой странице сайте, могут использоваться в качестве тренажера для отработки арифметических действий учителями, преподавателями, родителями или репетиторами для учащихся 1-го, 2-го, 3-го, 4-го класса.

Задания на деление пятизначного числа на двузначное с остатком, которые находятся в этом разделе сайта, можно использовать в карточках на уроках математики для закрепления пройденного материала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector